Alternative translational initiation of ATP sulfurylase underlying dual localization of sulfate assimilation pathways in plastids and cytosol in Arabidopsis thaliana
نویسندگان
چکیده
Plants assimilate inorganic sulfate into sulfur-containing vital metabolites. ATP sulfurylase (ATPS) is the enzyme catalyzing the key entry step of the sulfate assimilation pathway in both plastids and cytosol in plants. Arabidopsis thaliana has four ATPS genes (ATPS1, -2, -3, and -4) encoding ATPS pre-proteins containing N-terminal transit peptide sequences for plastid targeting, however, the genetic identity of the cytosolic ATPS has remained unverified. Here we show that Arabidopsis ATPS2 dually encodes plastidic and cytosolic ATPS isoforms, differentiating their subcellular localizations by initiating translation at AUG(Met1) to produce plastid-targeted ATPS2 pre-proteins or at AUG(Met52) or AUG(Met58) within the transit peptide to have ATPS2 stay in cytosol. Translational initiation of ATPS2 at AUG(Met52) or AUG(Met58) was verified by expressing a tandem-fused synthetic gene, ATPS2 (5'UTR-His12) :Renilla luciferase:ATPS2 (Ile13-Val77) :firefly luciferase, under a single constitutively active CaMV 35S promoter in Arabidopsis protoplasts and examining the activities of two different luciferases translated in-frame with split N-terminal portions of ATPS2. Introducing missense mutations at AUG(Met52) and AUG(Met58) significantly reduced the firefly luciferase activity, while AUG(Met52) was a relatively preferred site for the alternative translational initiation. The activity of luciferase fusion protein starting at AUG(Met52) or AUG(Met58) was not modulated by changes in sulfate conditions. The dual localizations of ATPS2 in plastids and cytosol were further evidenced by expression of ATPS2-GFP fusion proteins in Arabidopsis protoplasts and transgenic lines, while they were also under control of tissue-specific ATPS2 promoter activity found predominantly in leaf epidermal cells, guard cells, vascular tissues and roots.
منابع مشابه
A cDNA clone for an ATP-sulfurylase from Arabidopsis thaliana.
Sulfate is the predominant sulfur source for plants. After uptake from the soil via specific transport proteins into plant roots, sulfate is activated by the enzyme ATP-sulfurylase to APS. ATP-sulfurylase activity in plants is detectable in green tissues and roots (Ellis, 1969; Lunn et al., 1990). Isoforms of the enzyme are localized in plastids and in the cytosol (Lunn et al., 1990; Renosto et...
متن کاملCloning of a cDNA Encoding ATP Sulfurylase from Arabicfopsis fhaliana by Functional Expression in Sa
ATP sulfurylase, the first enzyme in the sulfate assimilation pathway of plants, catalyzes the formation of adenosine phosphosulfate from ATP and sulfate. Here we report the cloning of a cDNA encoding ATP sulfurylase (APS1) from Arabidopsis thaliana. APSl was isolated by its ability to alleviate the methionine requirement of an ATP sulfurylase mutant strain of Saccharomyces cerevisiae (yeast). ...
متن کاملNatural variation in the ATPS1 isoform of ATP sulfurylase contributes to the control of sulfate levels in Arabidopsis.
Sulfur is an essential macronutrient for all living organisms. Plants take up inorganic sulfate from the soil, reduce it, and assimilate it into bioorganic compounds, but part of this sulfate is stored in the vacuoles. In our first attempt to identify genes involved in the control of sulfate content in the leaves, we reported that a quantitative trait locus (QTL) for sulfate content in Arabidop...
متن کاملPlastid-cytosol partitioning and integration of metabolic pathways for APS/PAPS biosynthesis in Arabidopsis thaliana
Plants assimilate sulfate from the environment to synthesize biologically active sulfur-containing compounds required for growth and cellular development. The primary steps of sulfur metabolism involve sequential enzymatic reactions synthesizing adenosine 5'-phosphosulfate (APS) and 3'-phosphoadenosine 5'-phosphosulfate (PAPS). Recent finding suggests that an adenosine nucleotide transport syst...
متن کاملEffect of ATP sulfurylase overexpression in bright yellow 2 tobacco cells. Regulation Of atp sulfurylase and SO4(2-) transport activities.
To determine if the ATP sulfurylase reaction is a regulatory step for the SO4(2-)-assimilation pathway in plants, an Arabidopsis thaliana ATP sulfurylase cDNA, APS2, was fused to the 35S promoter of the cauliflower mosaic virus and introduced by Agrobacterium tumefaciens-mediated transformation into isolated Bright Yellow 2 tobacco (Nicotiana tabacum) cells. The ATP sulfurylase activity in tran...
متن کامل